Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Journal of Environmental and Occupational Medicine ; (12): 529-535, 2023.
Article in Chinese | WPRIM | ID: wpr-973643

ABSTRACT

Diesel exhaust (DE), Group 1 carcinogen, is an important source of air pollutants. Studies show that DE exposure associates with elevated incidences of respiratory and cardiovascular diseases. The toxic effects of DE are closely related to its components. Polycyclic aromatic hydrocarbons (PAHs) are one of the main toxic components in DE and are often used as human exposure biomarkers to DE. However, the exposure assessment of DE using PAHs as biomarkers could be interfered due to the other sources of PAHs. Therefore, identification of highly specific and reliable PAHs sourced biomarkers of DE exposure has become a hotspot of current research. New biomarkers of DE may play an important role in determining human exposure to DE and establishing dose-response relationship of DE exposure and health outcomes of interest. This paper focused on current progress in terms of PAHs sourced biomarkers of human exposure to DE with the following aims: (1) to clarify the types of PAHs sourced biomarkers to DE; (2) to explore the applicability and limitations of PAHs sourced biomarkers for DE exposure assessment in occupational exposure and environmental exposure analysis; and (3) to summarize the analysis methods for PAHs sourced exposure biomarkers in human urine samples and compare the advantages and disadvantages of different analytical methods.

2.
Journal of Environmental and Occupational Medicine ; (12): 524-528, 2023.
Article in Chinese | WPRIM | ID: wpr-973642

ABSTRACT

As a source of traffic-related air pollution, diesel particulate matter (DPM) associate with a variety of lung-related diseases, but there is no systematic review of the relationship between DPM and the development and progression of asthma. This article reviewed the relationship between DPM and asthma, the effect and mechanism of DPM on airway inflammation and remodeling in asthma, and illustrated that DPM exposure may participate in airway inflammation and remodeling through oxidative stress, immune regulation and regulation of lung and intestinal microecology, so as to promote the development and progression of asthma.

3.
Journal of Environmental and Occupational Medicine ; (12): 515-519, 2023.
Article in Chinese | WPRIM | ID: wpr-973640

ABSTRACT

Diesel exhaust (DE) is an important pollution source widely existing in the living and production environment, which is closely related to the health of the public and occupational groups. The International Agency for Research on Cancer has classified DE as a Group 1 carcinogen. Considering the negative health impacts on the respiratory system due to DE exposure in vitro, it is crucial to apply reliable test systems allowing accurate assessment of the biological effects of DE. The exposure technology of respiratory system in vitro is considered as one of the feasible measures to implement the 3R (reduce, refine, and replace) principle in animal experiments. Compared with the traditional submerged culture in vitro models, the air-liquid interface (ALI) exposure technology has the advantages including fewer influencing factors, easier exposure condition control, and shorter exposure cycle. ALI has become an important tool to study molecular events associated with physiology and pathology of respiratory system, and action modes and interactions of different cell types. Also, ALI has been increasingly widely used because it can simulate the actual processes of human respiratory system cells and/or tissues to DE exposure. This review was intended to introduce the development and advantages of ALI exposure technology, and further summarized the application progress of ALI exposure technology in studying the respiratory toxicity induced by DE exposure in vitro, so as to provide new ideas and pathways for the use of ALI exposure technology in the study of biomarkers and mechanisms of respiratory toxicity associated with DE exposure, and provide basic data to screen and promote biomarkers for exposed populations.

4.
Journal of Environmental and Occupational Medicine ; (12): 508-514, 2023.
Article in Chinese | WPRIM | ID: wpr-973639

ABSTRACT

Background Air pollution is related to the occurrence and development of mental diseases. Olfactory bulb damage might be the potential prodromal symptom and sign of these diseases. The toxicity of diesel exhaust (DE), one of the main sources of air pollution, on olfactory bulb and the underlying mechanisms remain to be elucidated. Objective To explore the toxicity of DE on mouse olfactory bulb and underlying mechanisms. Methods A total of 40 C57BL/6 mice were randomly divided into four groups for exposure to DE by systemic inhalation: control group (filtered air), low exposure group (750 μg·m−3 DE), medium exposure group (1500 μg·m−3 DE), and high exposure group (3000 μg·m−3 DE). The mouse inhalation exposure to DE was performed 1 h per day for 28 d. HE staining was performed to observe pathological changes in mouse olfactory bulb tissue. TUNEL assay was used to observe apop-tosis in olfactory bulb. Kyoto Encyclopedia of Genes and Genomes (KEGG) was exhibited to explore potential mechanisms of olfactory bulb damage associated with DE. Quantitative real-time PCR (qPCR) was used to determine mRNA expression levels of inflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Immunofluorescence staining was conducted to observed the microglia and astrocyte activation in olfactory bulb. Results The HE staining results showed that the number of periglomerular cells in the glomerular layer of olfactory bulb decreased in a dose-dependent manner, and the cells in the granule cell layer of olfactory bulb became disordered after DE exposure. The TUNEL staining showed that TUNEL positive cells in olfactory bulb tissue and neuronal apoptosis increased in the exposed groups compared with the control group (P<0.05). The KEGG pathway analysis showed that DE associated with significant enrichment of TNF signaling pathway in olfactory bulb tissue. The qPCR results showed that the TNF-α relative expression level significantly increased by 67% and the IL-6 relative expression level by 340% in the DE high exposure dose group compared with the control group (P<0.05). According to the immunofluorescence staining results, the numbers of activated microglia and astrocytes in olfactory bulb tissue significantly increased in the DE high exposure group, the relative fluorescence intensity of ionized calcium binding adaptor molecule 1 (IBA-1) increased by 120%, the granule cell layer relative fluorescence intensity of glial fibrillary acidic protein (GFAP) increased by 400%, and the glomerular layer relative fluorescence intensity of GFAP increased by 240% than those in the control group (P<0.05). Conclusion Inhalation exposure to DE can lead to glial cell activation including microglia and astrocytes in olfactory bulb tissue by activating inflammatory pathways and releasing inflammatory factors TNF-α and IL-6, leading to neuronal apoptosis in olfactory bulb tissue.

5.
Journal of Environmental and Occupational Medicine ; (12): 500-507, 2023.
Article in Chinese | WPRIM | ID: wpr-973638

ABSTRACT

Background Due to the limited availability of established research models, very few studies addressed the health effects and underlying mechanisms following exposure to diesel exhaust during the initiation of pulmonary respiration. It is highly demanded to elucidate such health effects and underlying mechanisms, so as to exert protective measures during the early stages of life. Objective To evaluate the health effects of diesel exhaust very-early-in-life inhalation in hatchling chicken with a novel chicken embryo air cell inhalation exposure model, and to explore the potential roles of aryl hydrocarbon receptor signaling pathways in the observed effects with a specific aryl hydrocarbon receptor inhibitor. Methods Fertilized chicken eggs were assigned into five groups randomly (15 eggs per group): control group, air control group, aryl hydrocarbon receptor inhibitor (PDM2) group, diesel exhaust group, and diesel exhaust + aryl hydrocarbon receptor inhibitor (PDM2) group. Fertilized eggs were incubated with standard procedure. At embryonic day 17 (ED17), aryl hydrocarbon receptor inhibitor was administered to the corresponding animals. During embryonic day 18-19 (ED18-19), chicken embryos were exposed to diesel exhaust via air cell inhalation, then placed back to incubator until hatch. The air control group received clean air infusion during ED18-19, while the control group did not receive any treatment. Within 24 h post-hatch, 26 hatchling chickens were anesthetized with sodium pentobarbital, subjected to electrocardiography, and sacrificed to harvest tissue samples of heart and lung. Cardiopulmonary toxicities were evaluated by histopathology, and potential changes in the protein expression levels of aryl hydrocarbon receptor pathway molecule cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and fibrosis-related pathway molecule phosphorylated SMAD family member 2 (pSMAD2) were assessed by Western blotting. The remaining 29 hatchling chickens were reared until two weeks old, and then subjected to identical treatments. Results The inhalation exposure to diesel exhaust at initiation of pulmonary respiration resulted in thickened right ventricular wall (by 220.3% relative to the control group, same hereafter) and elevated heart rate (17.4%) in one-day-old hatchling chickens. Although no remarkable fibrotic lesions were observed at this point, the expression levels of CYP1A1 and phosphorylation levels of SMAD2 in the lung tissues significantly increased (by 81.3% and 71.6%, respectively). Such changes were effectively abolished by the aryl hydrocarbon receptor inhibitor PDM2 pretreatment. In the two-week-old animals, the thickened right ventricular wall (by 339.3%) and elevated heart rate (by 18.9%) persisted, and significant fibrotic lesions were observed in the lung tissue samples under Masson staining. Again, the aryl hydrocarbon receptor inhibitor PDM2 pretreatment effectively abolished such changes. In addition, no statistically significant changes in CYP1A1 expression levels were observed in the two-week-old chicken lung samples, and a remarkable down-regulation of SMAD2 phosphorylation was observed. The aryl hydrocarbon receptor inhibitor PDM2 pretreatment independently decreased the phosphorylation levels of SMAD2 in the two-week-old chicken lung samples. Conclusion Inhalation exposure to diesel exhaust at initiation of pulmonary respiration could result in persistent cardiopulmonary injury in hatchling chickens, and the underlying mechanism might be associated with the regulation of pSMAD2 by the aryl hydrocarbon receptor signaling pathway.

6.
Journal of Environmental and Occupational Medicine ; (12): 487-490, 2023.
Article in Chinese | WPRIM | ID: wpr-973636

ABSTRACT

The air pollution related health hazards have been a major public health issue for a long time. As an important source of air pollution, diesel exhaust (DE) exposure associates with serious adverse health outcomes. Apart from the exposure in general population, extensive occupational DE exposure populations are reported in many industries, such as transportation, mining, shipping, and construction. Therefore, the studies for internal exposure levels, biomarkers, and toxic mechanisms of DE in occupational population are critical for protecting human from DE-posed health hazards. This special column published some novel findings involving DE exposure (internal & external exposure level), multiple biological effects, toxicity mechanisms, key molecular events, and crucial biomarkers. These studies will provide scientific data for controlling DE associated occupational health hazards, formulating effective DE pollution control strategies, and provide a new scientific perspective and evidence for health risk assessment and prevention.

7.
Article | IMSEAR | ID: sea-188024

ABSTRACT

Background: Diesel vehicles exhaust contains toxic nanoparticles that drastically affect lung tissue due to their direct cytotoxic effects, induction of oxidative stress, inflammatory signaling pathways and DNA damage. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory effects and efficient regenerative capacity in chronic lung diseases. Objectives: Evaluation of the effects of MSCs and MSCs-derived micro vesicles (MSCs-MVs) on pulmonary toxicity induced by diesel exhaust nanoparticles (DENPs). Materials and Methods: Sixty male rats were equally divided into: Group I (Control rats), Group II (DENPs group) received repeated doses of DENPs (180μg/rat) intratracheally every other day for 6 days, Group III (MSCs group) received MSCs intravenously (3×106 cells) after the last dose of DENPs and Group IV (MSCs-MVs group) received MSCs-MVs (0.5 mg/mL) intravenously after the last dose of DENPs. Lung tissue were subjected to histological and immunohistochemical assessment. Inflammatory cytokines and bronchoalveolar lavage fluid (BALF) contents of inflammatory cells, albumin, LDH and total proteins were evaluated. Results: Histological picture of lung tissue in DENPs group showed numerous collapsed alveoli, thick interalveolar septa and marked cellular infiltration. Elastic fibers were markedly decreased by DENPs. Increased optical density of NF-κB/p65 immunoreactivity. Bronchoalveolar lavage fluid showed significant elevation of inflammatory cytokines (TNF-a, IL-6), polymorphonuclear leukocytes (PMN), neutrophils, macrophages, LDH, total proteins and albumin. Treatment with either MSCs or MSCs-MVs led to a significant amelioration of all of the aforementioned studied parameters. Conclusion: MSCs-MVs and MSCs showed significant therapeutic effects against DENPs damaging effects on the lung tissues via their regenerative capacity and anti-inflammatory effects.

8.
Safety and Health at Work ; : 141-150, 2019.
Article in English | WPRIM | ID: wpr-761358

ABSTRACT

BACKGROUND: Evidence on associations between occupational diesel exhaust and gasoline exposure and colorectal cancer is limited. We aimed to assess the effect of workplace exposure to diesel exhaust and gasoline on the risk of colorectal cancer. METHODS: This caseecontrol study included 181,709 colon cancer and 109,227 rectal cancer cases diagnosed between 1961 and 2005 in Finland, Iceland, Norway, and Sweden. Cases and controls were identified from the Nordic Occupational Cancer Study cohort and matched for country, birth year, and sex. Diesel exhaust and gasoline exposure values were assigned by country-specific job-exposure matrices. Odds ratios and 95% confidence intervals were calculated by using conditional logistic regression models. The results were adjusted for physical strain at work and occupational exposure to benzene, formaldehyde, ionizing radiation, chlorinated hydrocarbons, chromium, and wood dust. RESULTS: Diesel exhaust exposure was associated with a small increase in the risk of rectal cancer (odds ratio 1/4 1.05, 95% confidence interval 1.02–1.08). Gasoline exposure was not associated with colorectal cancer risk. CONCLUSION: This study showed a small risk increase for rectal cancer after workplace diesel exhaust exposure. However, this finding could be due to chance, given the limitations of the study.


Subject(s)
Benzene , Case-Control Studies , Chromium , Cohort Studies , Colonic Neoplasms , Colorectal Neoplasms , Dust , Finland , Formaldehyde , Gasoline , Hydrocarbons, Chlorinated , Iceland , Logistic Models , Norway , Occupational Exposure , Odds Ratio , Parturition , Radiation, Ionizing , Rectal Neoplasms , Scandinavian and Nordic Countries , Sweden , Vehicle Emissions , Wood
9.
Allergy, Asthma & Immunology Research ; : 246-256, 2016.
Article in English | WPRIM | ID: wpr-83198

ABSTRACT

PURPOSE: Diesel exhaust particles (DEPs) can induce and trigger airway hyperresponsiveness (AHR) and inflammation. The aim of this study was to investigate the effect of long-term DEP exposure on AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. METHODS: BALB/c mice were exposed to DEPs 1 hour a day for 5 days a week for 3 months in a closed-system chamber attached to a ultrasonic nebulizer (low dose: 100 microg/m3 DEPs, high dose: 3 mg/m3 DEPs). The control group was exposed to saline. Enhanced pause was measured as an indicator of AHR. Animals were subjected to whole-body plethysmography and then sacrificed to determine the performance of bronchoalveolar lavage and histology. RESULTS: AHR was higher in the DEP group than in the control group, and higher in the high-dose DEP than in the low-dose DEP groups at 4, 8, and 12 weeks. The numbers of neutrophils and lymphocytes were higher in the high-dose DEP group than in the low-dose DEP group and control group at 4, 8, and 12 weeks. The levels of interleukin (IL)-5, IL-13, and interferon-gamma were higher in the low-dose DEP group than in the control group at 12 weeks. The level of IL-10 was higher in the high-dose DEP group than in the control group at 12 weeks. The level of vascular endothelial growth factor was higher in the low-dose and high-dose DEP groups than in the control group at 12 weeks. The level of IL-6 was higher in the low-dose DEP group than in the control group at 12 weeks. The level of transforming growth factor-beta was higher in the high-dose DEP group than in the control group at 4, 8, and 12 weeks. The collagen content and lung fibrosis in lung tissue was higher in the high-dose DEP group at 8 and 12 weeks. CONCLUSIONS: These results suggest that long-term DEP exposure may increase AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model.


Subject(s)
Animals , Mice , Airway Remodeling , Bronchoalveolar Lavage , Collagen , Fibrosis , Goblet Cells , Hyperplasia , Inflammation , Interferon-gamma , Interleukin-10 , Interleukin-13 , Interleukin-6 , Interleukins , Lung , Lymphocytes , Nebulizers and Vaporizers , Neutrophils , Plethysmography , Pneumonia , Ultrasonics , Vascular Endothelial Growth Factor A , Vehicle Emissions
10.
Environmental Health and Toxicology ; : e20140009-2014.
Article in English | WPRIM | ID: wpr-206478

ABSTRACT

Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 microm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.


Subject(s)
Humans , Air Pollution , Carbon , Carcinogens , Hydrocarbons , International Agencies , Korea , Lung Neoplasms , Metals , Vehicle Emissions
11.
Salud pública Méx ; 55(2): 155-161, mar.-abr. 2013. ilus, tab
Article in English | LILACS | ID: lil-669721

ABSTRACT

OBJECTIVE: To study the relationship between light absorption measurements of PM2.5 at various distances from heavy traffic roads and diesel vehicle counts in Mexico City. MATERIALS AND METHODS: PM2.5 samples were obtained from June 2003-June 2005 in three MCMA regions. Light absorption (b abs) in a subset of PM2.5 samples was determined. We evaluated the effect of distance and diesel vehicle counts to heavy traffic roads on PM2.5 b abs using generalized estimating equation models. RESULTS: Median PM2.5 b abs measurements significantly decrease as distance from heavy traffic roads increases (p<0.002); levels decreased by 7% (CI95% 0.9-14) for each 100 additional meters from heavy traffic roads. Our model predicts that PM2.5 b abs measurements would increase by 20% (CI95% 3-38) as the hourly heavy diesel vehicle count increases by 150 per hour. CONCLUSION: PM2.5 b abs measurements are significantly associated with distance from motorways and traffic density and therefore can be used to assess human exposure to traffic-related emissions.


OBJETIVO: Evaluar la relación entre las mediciones de absorción de luz de las PM2.5 a diferentes distancias de vías de tráfico y el aforo vehicular de diesel en la Ciudad de México. MATERIAL Y MÉTODOS: Se realizaron mediciones de PM2.5 y su análisis de b abs en tres zonas de la Ciudad de México. Se usaron modelos GEE para evaluar el efecto de la distancia y el aforo vehicular de tráfico pesado sobre PM2.5 b abs. RESULTADOS: Se observó una tendencia decreciente en la mediana de PM2.5 b abs conforme se incrementó la distancia a las avenidas de alto tráfico (p<0.002); los niveles decrecen en 7% (CI95% 0.9-14) por cada 100 metros de incremento. Las mediciones de PM2.5 b abs se incrementan en 20% (CI95% 3-38) cuando el aforo vehicular a diesel es mayor de 150 en una hora. CONCLUSIONES: Las mediciones de PM2.5 b abs están significativamente asociadas con la distancia de avenidas con alto tránsito vehicular y con vehículos de diesel.


Subject(s)
Vehicle Emissions/analysis , Cities , Light , Mexico , Motor Vehicles/statistics & numerical data
12.
Indian J Exp Biol ; 2010 July; 48(7): 710-721
Article in English | IMSEAR | ID: sea-145022

ABSTRACT

Environmental pollutants have a significant impact on the ecosystem and disrupt balance between environment, human and non-human components that result in deleterious effects to all forms of life. Identifying environmental factors for potential imbalance are extremely crucial for devising strategies for combating such toxic dysregulation. Automobile exhaust (in air), heavy metals (in food and water) and pesticides (in air, food, soil and water) are the most common environmental pollutants and their short and long term exposures can cause hazardous effects in humans leading to systemic disorders involving lungs, kidney and immune systems. Mechanisms involved in genesis of such toxic effects have revealed complex, interactive pathways. Strategies for the protection of homeostasis and health, viz., general preventive measures, nutritional supplements and herbal agents have been described, to counter these pollutants induced damaging effects on various body systems.

13.
Journal of Korean Medical Science ; : 759-763, 2005.
Article in English | WPRIM | ID: wpr-176551

ABSTRACT

Allergic airway diseases are related to exposure to atmospheric pollutants, which have been suggested to be one factor in the increasing prevalence of asthma. Little is known about the effect of ozone and diesel exhaust particulates (DEP) on the development or aggravation of asthma. We have used a mouse asthma model to determine the effect of ozone and DEP on airway hyperresponsiveness and inflammation. Methacholine enhanced pause (P(enh)) was measured. Levels of IL-4 and IFN-gamma were quantified in bronchoalveolar lavage fluids by enzyme immunoassays. The OVA-sensitized-challenged and ozone and DEP exposure group had higher P(enh) than the OVA-sensitized-challenged group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone exposure group. Levels of IFN-gamma were decreased in the OVA-sensitized-challenged and DEP exposure group and the OVA-sensitized-challenged and ozone and DEP exposure group compared to the OVA-sensitized-challenged and ozone exposure group. Levels of IL-4 were increased in the OVA-sensitized-challenged and ozone exposure group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone and DEP exposure group compared to OVA-sensitized-challenged group. Co-exposure of ozone and DEP has additive effect on airway hyperresponsiveness by modulation of IL-4 and IFN-gamma suggesting that DEP amplify Th2 immune response.


Subject(s)
Animals , Female , Mice , Air Pollutants/toxicity , Asthma/chemically induced , Disease Models, Animal , Drug Combinations , Drug Synergism , Hypersensitivity/complications , Interferon-gamma/immunology , Interleukin-4/immunology , Mice, Inbred BALB C , Ovalbumin , Ozone/toxicity , Pneumonia/chemically induced , Respiratory Hypersensitivity/chemically induced , Vehicle Emissions/toxicity
14.
Journal of Environment and Health ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-540913

ABSTRACT

Objective To observe the toxicity of diesel exhaust particles extracts(DEPE) on V79 cell in cell viability, membrane and oxidative stress. Methods Cell exposed different concentrations of DEPE for different time , the change of cell viability, the leakage of intracellular lactate dehydrogenase(LDH), intracellular glutathione(GSH) and glutathione peroxidase (GPX)content were determined respectively, and analyzed the relation between GSH and GPX. Results The results showed that the viability of V79 cell decreased and the leakage rate of lactate dehydrogenase increased gradually in according with the increasing dosage of DEPE,and that DEPE could impair V79 cell by oxidative stress, included intracellular GSH content decreased and the activity of GPX increased, indicating that GPX might play a important role in DEPE induced GSH depletion. Conclusion DEPE may impair cell viability and the cell membrane integrity, also impair cell by oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL